मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit : limx→2[x3-7x+6x3-7x2+16x-12] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`

बेरीज

उत्तर

Consider x3 – 7x + 6

2

1  0  -7   6
↓  2   4  -6
  1  2  -3   0

∴ x3 – 7x + 6 = (x – 2)(x2 + 2x – 3)

Consider x3 – 7x2 + 16x – 12

2

1  -7   16 -12
↓   2  -10  12
  1  -5    6     0

∴  x3 – 7x2 + 16x – 12 = (x – 2)(x2 – 5x + 6)

= (x – 2)(x – 2)(x – 3)

∴ `lim_(x -> 2) (x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)`

= `lim_(x  -> 2) ((x - 2)(x^2 + 2x  - 3))/((x - 2)(x - 2)(x - 3))`

= `lim_(x -> 2) (x^2 + 2x - 3)/((x - 2)(x - 3))`   ...[∵ x → 2, x ≠ 2 ∴ x – 2 ≠ 0]

= `lim_(x -> 2) (x^2 + 2x - 3)` = 22 + 2(2) – 3 = 5 and

`lim_(x -> 2) (x - 2)(x - 3)` = (2 – 2)(2 – 3) = 0

∴  the given limit does not exist.

shaalaa.com
Factorization Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.2 [पृष्ठ १४१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit:

`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`


Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`


Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`


Evaluate the following limit:

`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`


Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limit :

`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit :

`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`


Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Evaluate the following limits

`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`


Evaluate the following limit :

`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limit:

`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×