Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`
उत्तर
`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`
To find the factor of numerator and denominator by synthetic division
Consider, numerator = x4 + 0x3 – 3x2 + 0x + 2
1 |
1 0 -3 0 2 1 1 -2 -2 |
1 1 -2 -2 0 |
∴ numerator = (x – 1) (x3 + x2 – 2x – 2)
Now, denominator = x3 – 5x2 + 3x + 1
1 |
1 -5 3 1 1 -4 -1 |
1 -4 -1 0 |
∴ denominator = (x – 1) (x2 – 4x – 1)
∴ `lim_(x -> 1) (x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)`
= `lim_(x -> 1) ((x - 1)(x^3 + x^2 - 2x - 2))/((x - 1)(x^2 - 4x - 1))`
= `lim_(x -> 1) (x^3 + x^2 - 2x - 2)/(x^2 - 4x - 1)` ...[∵ x → 1, ∴ x ≠ 1, ∴ x − 1 ≠ 0)]
= `(lim_(x -> 1) (x^3 + x^2 - 2x - 2))/(lim_(x -> 1) (x^2 - 4x - 1))`
= `(1^3 + 1^2 - 2(1) - 2)/(1^2 - 4(1) - 1)`
= `(1 + 1 - 2 - 2)/(1 - 4 - 1)`
=`(-2)/(-4)`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following limit:
`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit :
`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following limit :
`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit :
`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following limit :
`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`
Evaluate the following limit :
`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
Select the correct answer from the given alternatives.
`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` =
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following limits
`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`
Evaluate the following
Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`
Evaluate the following limits:
`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`
Evaluate the following limit:
`lim_(x->2) [(z^2 - 5_z + 6)/ (z^2 - 4)]`
Evaluate the following limit:
`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following limit:
`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`