हिंदी

Evaluate the following limit : limx→1[x4-3x2+2x3-5x2+3x+1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`

योग

उत्तर

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`

To find the factor of numerator and denominator by synthetic division

Consider, numerator = x4 + 0x3 – 3x2 + 0x + 2

1

1  0  -3   0  2
    1   1  -2 -2
  1  1  -2  -2  0

∴ numerator = (x – 1) (x3 + x2 – 2x – 2)

Now, denominator = x3 – 5x2 + 3x + 1

1

1  -5   3   1
     1  -4  -1
  1  -4  -1  0

∴ denominator = (x – 1) (x2 – 4x – 1) 

∴ `lim_(x -> 1) (x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)`

= `lim_(x -> 1) ((x - 1)(x^3 + x^2 - 2x - 2))/((x - 1)(x^2 - 4x - 1))`

= `lim_(x -> 1) (x^3 + x^2 - 2x - 2)/(x^2 - 4x - 1)`  ...[∵ x → 1, ∴ x ≠ 1, ∴ x − 1 ≠ 0)]

= `(lim_(x -> 1) (x^3 + x^2 - 2x - 2))/(lim_(x -> 1) (x^2 - 4x - 1))`

= `(1^3 + 1^2 - 2(1) - 2)/(1^2 - 4(1) - 1)`

= `(1 + 1 - 2 - 2)/(1 - 4 - 1)` 

 =`(-2)/(-4)`

= `1/2`

shaalaa.com
Factorization Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.2 [पृष्ठ १४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Exercise 7.2 | Q III. (3) | पृष्ठ १४१

संबंधित प्रश्न

Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]` 


Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limit:

`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`


Evaluate the following limit:

`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`


Evaluate the following limit :

`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`


Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`


Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`


Evaluate the following limit :

`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`


Evaluate the following limit :

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`


Evaluate the following

Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limits:

`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x->2) [(z^2 - 5_z + 6)/ (z^2 - 4)]` 


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×