हिंदी

Evaluate the following limit : limz→2[z2-5z+6z2-4] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit:

`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`

मूल्यांकन

उत्तर

`lim_(z -> 2) (z^2 - 5z + 6)/(z^2 - 4)`

= `lim_(z -> 2) ((z - 2)(z - 3))/((z - 2)(z + 2))`

= `lim_(z -> 2) (z - 3)/(z + 2)            ...[(because z -> 2","  z ≠ 2),(therefore z - 2 ≠ 0)]`

= `(lim_(z -> z) (z  - 3))/(lim_(z -> 2)(z + 2))`

= `(2 - 3)/(2 + 2)`

= `-1/4`

shaalaa.com
Factorization Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.2 [पृष्ठ १४१]

APPEARS IN

संबंधित प्रश्न

Evaluate the following limits: `lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`


Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`


Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`


Evaluate the following limit :

`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limit :

`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`


Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`


Evaluate the following limit :

`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`


Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`


Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`


Evaluate the following limit :

`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7+x^5+160)/(x^3+8)]`


Evaluate the following limits:

`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×