Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
उत्तर
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Consider, `x^2 + xsqrt(2) - 4 = x^2 + sqrt(2) x - 4`
= `x^2 + 2sqrt(2)x - sqrt(2)x - 4`
= `x(x + 2sqrt(2)) - sqrt(2)(x + 2sqrt(2))`
= `(x + 2sqrt(2)) (x - sqrt(2))`
`x^2 - 3x sqrt(2) + 4 = x^2 - 3sqrt(2)x + 4`
= `x^2 - 2sqrt(2)x - sqrt(2)x + 4`
= `x(x - 2sqrt(2)) - sqrt(2)(x - 2sqrt(2))`
= `(x - 2sqrt(2)) (x - sqrt(2))`
Now, `lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
= `lim_(x -> sqrt(2)) ((x + 2sqrt(2))(x - sqrt(2)))/((x - 2sqrt(2))(x - sqrt(2))`
= `lim_(x -> sqrt(2)) (x + 2sqrt(2))/(x - 2sqrt(2)) ...[(because x -> sqrt(2)"," therefore x ≠ sqrt(2)","),(therefore x - sqrt(2)≠ 0)]`
= `(lim_(x -> sqrt(2))(x + 2sqrt(2)))/(lim_(x -> sqrt(2))(x - 2sqrt(2))`
= `(sqrt(2) + 2sqrt(2))/(sqrt(2) - 2sqrt(2))`
= `(3sqrt(2))/(-sqrt(2))`
= – 3
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following limit :
`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`
Evaluate the following limit :
`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following limit :
`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`
Evaluate the following limit :
`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
Evaluate the following limits
`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limit:
`lim_(x->-2)[(x^7+x^5+160)/(x^3+8)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limits:
`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit:
`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following limit:
`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`