English

Select the correct answer from the given alternatives. limx→2(x4-16x2-5x+6) = - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =

Options

  • 23

  • 32

  • – 32

  • – 16

MCQ

Solution

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` = – 32

shaalaa.com
Factorization Method
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.1 [Page 158]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit:

`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`


Evaluate the following limit :

`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit :

`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`


Evaluate the following limit :

`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`


Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`


Evaluate the following limit :

`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`


Evaluate the following limit :

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`


Select the correct answer from the given alternatives.

`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =


Evaluate the following

Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`


Evaluate the following limit:

`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7+x^5+160)/(x^3+8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×