English

Evaluate the following limit : limy→12[1-8y3y-4y3] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit :

`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`

Sum

Solution

`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`

= `lim_(y -> 1/2) (1 - 8y^3)/(y(1 - 4y^2))`

= `lim_(y -> 1/2) ((1)^3 - (2y)^3)/(y[(1)^2 - (2y)^2]`

= `lim_(y -> 1/2) ((1 - 2y)(1 + 2y + 4y^2))/(y(1 - 2y)(1 + 2y))`

= `lim_(y -> 1/2) (1 + 2y + 4y^2)/(y(1 + 2y))  ...[(because  y -> 1/2"," therefore y ≠ 1/2),(therefore 2y ≠ 1 therefore 2y - 1 ≠ 0),(therefore 1 - 2y ≠ 0)]`

= `(lim_(y -> 1/2)(1 + 2y + 4y^2))/(lim_(y -> 1/2)[y(1 + 2y)]`

= `(1 + 2(1/2) + 4(1/2)^2)/(1/2[1 + 2(1/2)]`

= `(1 + 1 + 1)/(1/2(2)`

= 3

shaalaa.com
Factorization Method
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.2 [Page 141]

RELATED QUESTIONS

Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limit:

`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`


Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limit :

`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit :

`lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limit :

`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`


Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`


Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limits:

`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following limit:

`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×