Advertisements
Advertisements
Question
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Solution
`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
= `lim_(x -> 2) (x(x^2 - 4x + 4))/((x^2 - 1)`
= `lim_(x -> 2) (x(x - 2)^2)/(x^2 - 1)`
= `(2(0))/((2)^2 - 1`
= `(2 xx 0)/3`
= 0
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit :
`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following limits
`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`