हिंदी

Evaluate the following limit : limx→0[6+x+x2-6x] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`

मूल्यांकन

उत्तर

`lim_(x -> 0)(sqrt(6 + x + x^2) - sqrt(6))/x`

= `lim_(x -> 0) (sqrt(6 + x + x^2) - sqrt(6))/x xx (sqrt(6 + x + x^2) + sqrt(6))/(sqrt(6 + x + x^2) + sqrt(6))`

= `lim_(x -> 0) (6 + x + x^2 - 6)/(x[sqrt(6 + x + x^2) + sqrt(6)]`

= `lim_(x -> 0) (x(x + 1))/(x[sqrt(6 + x + x^2) + sqrt(6)]`

= `lim_(x -> 0) (x + 1)/(sqrt(6 + x + x^2) + sqrt(6))`  ...[∵ x → 0 ∴ x ≠ 0]

= `(lim_(x -> 0) (x + 1))/(lim_(x -> 0)[sqrt(6 + x + x^2) + sqrt(6)]`

= `(0 + 1)/(sqrt(6 + 0 + 0) + sqrt(6))`

= `1/(2sqrt(6))`

shaalaa.com
Rationalization Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.3 [पृष्ठ १४३]

APPEARS IN

संबंधित प्रश्न

Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`


Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`


Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`


Evaluate the following limits:  `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`


``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`


Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the following limit :

`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limit :

`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`


Evaluate the following limit :

`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limit :

`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limit :

`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`


Evaluate the following limit :

`lim_(x -> 0)[(sqrt(x^2 + 9) - sqrt(2x^2 + 9))/(sqrt(3x^2 + 4) - sqrt(2x^2 + 4))]`


Evaluate the following limit :

`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`


Evaluate the Following limit :

`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`


Evaluate the Following limit :

`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the Following limit :

`lim_(x -> 0)[3/(xsqrt(9  - x)) - 1/x]`


Evaluate the following :

`lim_(x -> 0)[x]` ([*] is a greatest integer function.)


Evaluate the following :

If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit.

`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`


Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×