Advertisements
Advertisements
Question
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Solution
`lim_(x -> 0)(sqrt(6 + x + x^2) - sqrt(6))/x`
= `lim_(x -> 0) (sqrt(6 + x + x^2) - sqrt(6))/x xx (sqrt(6 + x + x^2) + sqrt(6))/(sqrt(6 + x + x^2) + sqrt(6))`
= `lim_(x -> 0) (6 + x + x^2 - 6)/(x[sqrt(6 + x + x^2) + sqrt(6)]`
= `lim_(x -> 0) (x(x + 1))/(x[sqrt(6 + x + x^2) + sqrt(6)]`
= `lim_(x -> 0) (x + 1)/(sqrt(6 + x + x^2) + sqrt(6))` ...[∵ x → 0 ∴ x ≠ 0]
= `(lim_(x -> 0) (x + 1))/(lim_(x -> 0)[sqrt(6 + x + x^2) + sqrt(6)]`
= `(0 + 1)/(sqrt(6 + 0 + 0) + sqrt(6))`
= `1/(2sqrt(6))`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit :
`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the following limit :
`lim_(x -> 0)[(sqrt(x^2 + 9) - sqrt(2x^2 + 9))/(sqrt(3x^2 + 4) - sqrt(2x^2 + 4))]`
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Evaluate the Following limit :
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the Following limit :
`lim_(x -> 0)[3/(xsqrt(9 - x)) - 1/x]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`