Advertisements
Advertisements
Question
Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Solution
`lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
= `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2 xx (sqrt(1 - y^2) + sqrt(1 + y^2))/(sqrt(1 - y^2) + sqrt(1 + y^2))]`
= `lim_(y -> 0) ((1 - y^2) - (1 + y^2))/((sqrt(1 - y^2) + sqrt(1 + y^2))`
= `lim_(y -> 0) (1 - y^2 - 1 - y^2)/(y^2(sqrt(1 - y^2) + sqrt(1 + y^2))`
= `lim_(y -> 0) (-2y^2)/(y^2(sqrt(1 - y^2) + sqrt(1 + y^2))`
= `lim_(y -> 0) (-2)/(sqrt(1 - y^2) + sqrt(1 + y^2)) ...[(because y -> 0"," therefore y ≠ 0","),(therefore y^2 ≠ 0)]`
= `(-2)/(sqrt(1 - 0^2) + sqrt(1 + 0^2)`
= `(-2)/(1 + 1)`
= `(-2)/2`
= –1
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the following limit :
`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`