English

Evaluate the following : If f(r) = πr2 then find limh→0[f(r+h)-f(r)h] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`

Sum

Solution

f(r) = πr2 

f(r + h) = π(r + h)2

= π(r2 + 2rh + h2)

= πr2 + 2πrh + πh2 

∴  `lim_("h" -> 0) ("f"("r" + "h") - "f"("r"))/"h"`

= `lim_("h" -> 0) (pi"r"^2 + 2pi"rh" + pi"h"^2 - pi"r"^2)/"h"`

= `lim_("h" -> 0) (2pi"rh" + pi"h"^2)/"h"`

= `lim_("h" -> 0) ("h"(2pi"h" + pi"h"))/"h"`

= `lim_("h" -> 0) (2pi"r" + pi"h")`   ...[∵ h → 0, ∵ h ≠ 0]

= 2πr + π(0)

= 2πr

shaalaa.com
Rationalization Method
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.2 [Page 159]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`


Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`


Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`


Evaluate the following limits:  `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`


``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`


Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`


Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`


Evaluate the following limit :

`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`


Evaluate the following limit :

`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limit :

`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limit :

`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limit :

`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`


Evaluate the following limit :

`lim_(x -> 0)[(sqrt(x^2 + 9) - sqrt(2x^2 + 9))/(sqrt(3x^2 + 4) - sqrt(2x^2 + 4))]`


Evaluate the following limit :

`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`


Evaluate the Following limit :

`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`


Evaluate the Following limit :

`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`


Evaluate the Following limit :

`lim_(x -> 0)[3/(xsqrt(9  - x)) - 1/x]`


Evaluate the following :

`lim_(x -> 0)[x]` ([*] is a greatest integer function.)


Evaluate the following limit:

`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit.

`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`


Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×