Advertisements
Advertisements
Question
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
Solution
`lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
= `lim_(y -> 2)[(2 - y)/(sqrt(3 - y) - 1) xx (sqrt(3 - y) + 1)/(sqrt(3 - y) + 1)]`
= `lim_(y -> 2) ((2 - y)(sqrt(3 - y) + 1))/(3 - y - 1)`
= `lim_(y -> 2) ((2 - y)(sqrt(3 - y) + 1))/(2 - y)`
= `lim_(y -> 2) (sqrt(3 - y) + 1) ...[("As" y -> 2"," y ≠ 2),(therefore y - 2 ≠ 0 therefore 2 - y ≠0)]`
= `sqrt(3 - 2) + 1`
= 1 + 1
= 2
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`