Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
उत्तर
`lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
= `lim_(y -> 2)[(2 - y)/(sqrt(3 - y) - 1) xx (sqrt(3 - y) + 1)/(sqrt(3 - y) + 1)]`
= `lim_(y -> 2) ((2 - y)(sqrt(3 - y) + 1))/(3 - y - 1)`
= `lim_(y -> 2) ((2 - y)(sqrt(3 - y) + 1))/(2 - y)`
= `lim_(y -> 2) (sqrt(3 - y) + 1) ...[("As" y -> 2"," y ≠ 2),(therefore y - 2 ≠ 0 therefore 2 - y ≠0)]`
= `sqrt(3 - 2) + 1`
= 1 + 1
= 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`