मराठी

Evaluate the following limits: limx→2[2+x-6-xx-2] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`

बेरीज

उत्तर

`lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`

= `lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2)) xx (sqrt(2 + x) + sqrt(6 - x))/(sqrt(2 + x) + sqrt(6 - x)) xx (sqrt(x) + sqrt(2))/(sqrt(x) + sqrt(2))]    ...[("By taking conjuagates"),("of both, the numerator"),("as well as the"),("Denomerator")]`

= `lim_(x -> 2) [((2 + x) - (6 - x))/((x - 2)) xx (sqrt(x) + sqrt(2))/(sqrt(2 + x) + sqrt(6  - x))]`

= `lim_(x -> 2) [(-4 + 2x)/(x - 2) xx (sqrt(x) + sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`

= `lim_(x -> 2) [(2(x - 2))/(x - 2) xx (sqrt(x) + sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`

= `lim_(x -> 2) [(2(sqrt(x) + sqrt(2)))/(sqrt(2 + x) + sqrt(6  - x))]     ...[(because x -> 2";"  x ≠ 2),(therefore x - 2 ≠ 0)]`

= `(2(sqrt(2) + sqrt(2)))/(sqrt(2 + 2) + sqrt(6 - 2)`

= `(2(2sqrt(2)))/(2 + 2)`

= `(4sqrt(2))/4`

= `sqrt(2)`

shaalaa.com
Rationalization Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - EXERCISE 7.3 [पृष्ठ १०३]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×