Advertisements
Advertisements
प्रश्न
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
उत्तर
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
= `lim_(x -> 4) [((x + 5)(x - 4))/(sqrt(3x + 4) - 4) xx(sqrt(3x + 4) + 4)/(sqrt(3x + 4) + 4)]`
= `lim_(x -> 4) ((x + 5)(x - 4)(sqrt(3x + 4) + 4))/(3x + 4 - 16)`
= `lim_(x -> 4) ((x + 5)(x - 4)(sqrt(3x + 4) + 4))/(3x - 12)`
= `lim_(x -> 4) ((x + 5)(x - 4)(sqrt(3x + 4) + 4))/(3(x - 4)`
= `lim_(x -> 4) ((x - 5)(sqrt(3x + 4) + 4))/3 ...[(because x ->4"," x ≠ 4),(therefore x - 4 ≠ 0)]`
= `((4 + 5)(sqrt(3(4) + 4) + 4))/3`
= `(9(4 + 4))/3`
= 3(8)
= 24
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the following limits: `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`
Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the Following limit :
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`