मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit : limx→2[2+x-6-xx-2] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`

बेरीज

उत्तर

`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`

= `lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2)) xx (sqrt(2 + x) + sqrt(6  - x))/(sqrt(2 + x) + sqrt(6 - x)) xx(sqrt(x) + sqrt(2))/(sqrt(x) + sqrt(2))]  ...[("By taking conjugates of both, the"),("numerator as well as the Denomerator")]`

= `lim_(x -> 2) [((2 + x) - (6 - x))/((x - 2)) xx (sqrt(x) + sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`

= `lim_(x -> 2) [(-4 + 2x)/(x - 2) xx (sqrt(x) +sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`

= `lim_(x -> 2)[(2(x - 2))/(x - 2) xx (sqrt(x ) + sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`

= `lim_(x -> 2)[(2(sqrt(x)+ sqrt(2)))/(sqrt(2 + x) + sqrt(6 - x))]  ...[(because  x -> 2"," therefore x ≠ 2","),(therefore x - 2 ≠ 0)]`

= `(lim_(x -> 2) 2(sqrt(x) + sqrt(2)))/(lim_(x -> 2) (sqrt(2 + x) + sqrt(6 - x))`

= `(2(sqrt(2) + sqrt(2)))/(sqrt(2 + 2) + sqrt(6 - 2))`

= `(2(2sqrt(2)))/(2 + 2)`

= `(4sqrt(2))/4`

= `sqrt(2)`

shaalaa.com
Rationalization Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.3 [पृष्ठ १४३]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`


Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`


Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`


Evaluate the following limits:  `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`


``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`


Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`


Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`


Evaluate the following limit :

`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`


Evaluate the following limit :

`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limit :

`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limit :

`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`


Evaluate the following limit :

`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`


Evaluate the following limit :

`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`


Evaluate the Following limit :

`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`


Evaluate the Following limit :

`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the Following limit :

`lim_(x -> 0)[3/(xsqrt(9  - x)) - 1/x]`


Evaluate the following :

`lim_(x -> 0)[x]` ([*] is a greatest integer function.)


Evaluate the following :

If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit.

`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`


Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×