Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
उत्तर
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
= `lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2)) xx (sqrt(2 + x) + sqrt(6 - x))/(sqrt(2 + x) + sqrt(6 - x)) xx(sqrt(x) + sqrt(2))/(sqrt(x) + sqrt(2))] ...[("By taking conjugates of both, the"),("numerator as well as the Denomerator")]`
= `lim_(x -> 2) [((2 + x) - (6 - x))/((x - 2)) xx (sqrt(x) + sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`
= `lim_(x -> 2) [(-4 + 2x)/(x - 2) xx (sqrt(x) +sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`
= `lim_(x -> 2)[(2(x - 2))/(x - 2) xx (sqrt(x ) + sqrt(2))/(sqrt(2 + x) + sqrt(6 - x))]`
= `lim_(x -> 2)[(2(sqrt(x)+ sqrt(2)))/(sqrt(2 + x) + sqrt(6 - x))] ...[(because x -> 2"," therefore x ≠ 2","),(therefore x - 2 ≠ 0)]`
= `(lim_(x -> 2) 2(sqrt(x) + sqrt(2)))/(lim_(x -> 2) (sqrt(2 + x) + sqrt(6 - x))`
= `(2(sqrt(2) + sqrt(2)))/(sqrt(2 + 2) + sqrt(6 - 2))`
= `(2(2sqrt(2)))/(2 + 2)`
= `(4sqrt(2))/4`
= `sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the following limits: `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the Following limit :
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the Following limit :
`lim_(x -> 0)[3/(xsqrt(9 - x)) - 1/x]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`