Advertisements
Advertisements
Question
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Solution
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
`lim_(x -> 2) (sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2) xx (sqrt(1 + sqrt(2 + x)) + sqrt(3))/(sqrt(1 + sqrt(2 + x)) + sqrt(3))`
= `lim_(x -> 2) (1 + sqrt(2 + x) - 3)/((x - 2)(sqrt(1 + sqrt(2 + x)) + sqrt(3))`
= `lim_(x -> 2) (sqrt(2 + x) - 2)/((x - 2)(sqrt(1 + sqrt(2 + x)) + sqrt(3))) xx (sqrt(2 + x) + 2)/(sqrt(2 + x) + 2)`
= `lim_(x -> 2) ((2 + x) - 4)/((x - 2)(sqrt(1 + sqrt(2 + x)) + sqrt(3))(sqrt(2 + x) + 2))`
= `lim_(x -> 2) (x - 2)/((x - 2)(sqrt(1 + sqrt(2 + x)) + sqrt(3))(sqrt(2 + x) + 2))`
= `lim_(x -> 2) 1/((sqrt(1 + sqrt(2 + x)) + sqrt(3))(sqrt(2 + x) + 2)) ...[(because x -> 2"," x ≠ 2),(therefore x - 2 ≠ 0)]`
= `(lim_(x ->2) (1))/([lim_(x -> 2) (sqrt(1 + sqrt(2 + x)) + sqrt(3))] xx [lim_(x -> 2) (sqrt(2 + x) + 2)]`
= `1/((sqrt(1 + sqrt(4)) + sqrt(3))(sqrt(2 + 2) + 2)`
= `1/((2sqrt(3))(4))`
= `1/(8sqrt(3))`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the following limits: `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the following limit :
`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the Following limit :
`lim_(x -> 0)[3/(xsqrt(9 - x)) - 1/x]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`