Advertisements
Advertisements
Question
Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Solution
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
= `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x)) xx (sqrt("a" + 2x) + sqrt(3x))/(sqrt("a" + 2x) + sqrt(3x)) xx(sqrt(3"a" + x) + 2sqrt(x))/(sqrt(3"a" + x) + 2sqrt(x))]`
= `lim_(x -> "a") [(("a" + 2x) - 3x)/((3"a" + x) - 4x) xx (sqrt(3"a" + x) + 2sqrt(x))/(sqrt("a" + 2x) + sqrt(3x))]`
= `lim_(x -> "a")[("a" - x)/(3"a" - 3x) xx(sqrt(3"a" + x) + 2sqrt(x))/(sqrt("a" + 2x) + sqrt(3x))]`
= `lim_(x -> "a")[(-(x - "a"))/(-3(x - "a")) xx (sqrt(3"a" + x) + 2sqrt(x))/(sqrt("a" + 2x) + sqrt(3x))]`
= `lim_(x -> "a") [(sqrt(3"a" + x) + 2sqrt(x))/(3(sqrt("a" + 2x) + sqrt(3x)))] ...[(because x -> "a""," x ≠ "a"),(therefore x - "a" ≠0)]`
= `(sqrt(3"a" + "a") + 2sqrt("a"))/(3(sqrt("a" + "2a") + sqrt(3"a"))]`
= `(sqrt(4"a") + 2sqrt("a"))/(3(sqrt(3"a") + sqrt(3"a"))`
= `(2sqrt("a") + 2sqrt("a"))/(3(2sqrt(3"a"))`
= `(4sqrt("a"))/(6sqrt(3) sqrt("a")`
= `2/(3sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Evaluate the Following limit :
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the Following limit :
`lim_(x -> 0)[3/(xsqrt(9 - x)) - 1/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`