Advertisements
Advertisements
Question
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Solution
`lim_(x -> 0) (sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))`
= `lim_(x -> 0) (sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x)) xx(sqrt(1 + x^2) + sqrt(1 + x))/(sqrt(1 + x^2) + sqrt(1 + x)) xx (sqrt(1 + x^3) + sqrt(1 + x))/(sqrt(1 + x^3) + sqrt(1 + x))`
= `lim_(x -> 0) ((1 + x^2 - 1 - x)(sqrt(1 + x^3) + sqrt(1 + x)))/((1 + x^3 - 1 - x)(sqrt(1 + x^2) + sqrt(1 + x))`
= `lim_(x -> 0) ((x^2 - x)(sqrt(1 + x^3) + sqrt(1 + x)))/((x^3 - x)(sqrt(1 + x^2) + sqrt(1 + x))`
= `lim_(x -> 0) (x(x - 1)(sqrt(1 + x^3) + sqrt(1 + x)))/(x(x^2 - 1)(sqrt(1 + x^2) + sqrt(1 + x))`
= `lim_(x -> 0) ((x - 1)(sqrt(1 + x^3) + sqrt(1 + x)))/((x^2 - 1)(sqrt(1 + x^2) + sqrt(1 + x))` ...[∵ x → 0 ∴ x ≠ 0]
= `(lim_(x -> 0) (x - 1) xx lim_(x -> 0) (sqrt(1 + x^3) + sqrt(1 + x)))/(lim_(x -> 0) (x^2 - 1) xx lim_(x -> 0) (sqrt(1 + x^2) + sqrt(1 + x))`
= `((0 - 1)(1 + 1))/((0 - 1)(1 + 1))`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the following limits: `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`
``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`
Evaluate the following limit :
`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the following limit :
`lim_(x -> 0)[(sqrt(x^2 + 9) - sqrt(2x^2 + 9))/(sqrt(3x^2 + 4) - sqrt(2x^2 + 4))]`
Evaluate the following limit :
`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the Following limit :
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the Following limit :
`lim_(x -> 0)[3/(xsqrt(9 - x)) - 1/x]`
Evaluate the following :
`lim_(x -> 0)[x]` ([*] is a greatest integer function.)
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`