English

Evaluate the following limits: limx→0[1+x2-1+x1+x3-1+x] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limits:  `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`

Sum

Solution

`lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`

= `lim_(x -> 0) ((sqrt(1 + x^2) - sqrt(1 + x))(sqrt(1 + x^3) + sqrt(1 + x))(sqrt(1 + x^2) + sqrt(1 + x)))/((sqrt(1 + x^3) - sqrt(1 + x))(sqrt(1 + x^3) + sqrt(1 + x))(sqrt(1 + x^2) + sqrt(1 + x))`

= `lim_(x -> 0) ([1 + x^2 - (1 + x)](sqrt(1 + x^3) + sqrt(1 + x)))/([1 + x^3 - (1 + x)](sqrt(1 + x^2) + sqrt(1 + x))`

= `lim_(x -> 0) (x(x - 1)(sqrt(1 + x^3) + sqrt(1 + x)))/(x(x^2 - 1)(sqrt(1 + x^2) + sqrt(1 + x))`

= `lim_(x -> 0) (x(x - 1)(sqrt(1 + x^3) + sqrt(1 + x)))/(x(x - 1)(x + 1)(sqrt(1 + x^2) + sqrt(1 + x)))`

= `lim_(x -> 0) (sqrt(1 + x^3) + sqrt(1 + x))/((x + 1)(sqrt(1 + x^2) + sqrt(1 + x))`      ...[∵ x → 0, ∴ x ≠ 0, ∴ x – 1 ≠ 0]

= `(sqrt(1 + 0^3) + sqrt(1 + 0))/((0 + 1)(sqrt(1 + 0^2) + sqrt(1 + 0))`

= `(1 + 1)/(1(1 + 1)`

= 1

shaalaa.com
Rationalization Method
  Is there an error in this question or solution?
Chapter 7: Limits - EXERCISE 7.3 [Page 103]

RELATED QUESTIONS

Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`


Evaluate the following limits: `lim_(x -> 2)[(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`


Evaluate the following limits: `lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`


``Evaluate the following limits: `lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`


Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`


Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`


Evaluate the following limit :

`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`


Evaluate the following limit :

`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`


Evaluate the following limit :

`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`


Evaluate the Following limit :

`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`


Evaluate the Following limit :

`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`


Evaluate the following :

`lim_(x -> 0)[x]` ([*] is a greatest integer function.)


Evaluate the following limit:

`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit:

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following limit.

`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×