Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`
उत्तर
`lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`
= `lim_(u -> 1)([(u^4 - 1^4)/(u - 1)])/([(u^3 - 1^3)/(u - 1)]) ...[(because u ->1";" u ≠ 1),(therefore u - 1 ≠ 0)]`
= `(4(1)^2)/(3(1)^2) ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(z - "a") = "na"^("n" - 1)]`
= `4/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`
Evaluate the following limit :
`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`
Evaluate the following limit :
`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following limit:
`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`