Advertisements
Advertisements
Question
Select the correct answer from the given alternatives.
`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =
Options
log 5 – 4
`log 5/4`
`log5/log4`
`log5/4`
Solution
`log 5/4`
Explanation;
`lim_(x -> 3) (5^(x - 3) - 4^(x - 3))/(sin(x - 3))`
Put x – 3 = h
∴ x = 3 + h
As → 3, h → 0
∴ Required limit
= `lim_("h" -> 0) (5^"h" - 4^"h")/(sin "h")`
= `lim_("h" -> 0) ((5^"h" - 1) - (4^"h" - 1))/sin"h"`
= `lim_("h" -> 0) (((5^"h" - 1))/"h" - ((4^"h" - 1))/"h")/(lim_("h" -> 0) sin"h"/"h"`
= `(log5 - log4)/1 ...[lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= `log(5/4)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`