Advertisements
Advertisements
Question
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Solution
`lim_(x -> 0)(9^x - 5^x)/(4^x - 1)`
= `lim_(x -> 0) (9^x - 1 + 1 - 5^x)/(4^x - 1)`
= `lim_(x -> 0) ((9^x - 1) - (5^x - 1))/(4^x - 1)`
= `lim_(x -> 0) ((9^x - 1 - 5^x - 1)/x)/((4^x - 1)/x` ...[∵ x → 0, ∴ x ≠ 0]
= `lim_(x -> 0) (((9^x - 1)/x) - ((5^x - 1)/x))/(((4^x - 1)/x)`
= `(lim_(x -> 0) (9^x - 1)/x - lim_(x -> 0) (5^x - 1)/x)/(lim_(x -> 0) (4^x - 1)/x)`
= `(log9 - log5)/(log4) ...[because lim_(x -> 0) ("a"^x - 1)/x = log "a"]`
= `1/(log4)log(9/5)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Select the correct answer from the given alternatives.
`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`