Advertisements
Advertisements
Question
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Solution
`lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
= `lim_(x -> 0)(log[2(1 + x/2)] - log[2(1 - x/2)])/x`
= `lim_(x -> 0) (log2 + log(1 + x/2) - [log2 + log(1 - x/2)])/x`
= `lim_(x -> 0) (log(1 + x/2) - log(1 - x/2))/x`
= `lim_(x -> 0) [(log(1 + x/2))/x - (log(1 - x/2))/x]`
= `lim_(x -> 0) [(log(1 + x/2))/(2(x/2)) - (log(1 - x/2))/((-2)(-x/2))]`
= `1/2 lim_(x -> 0) (log(1 + x/2))/(x/2) + 1/2 lim_(x -> 0) (log(1 - x/2))/(-x/2)`
= `1/2(1) + 1/2(1) ....[(because x -> 0"," x/2 -> 0 and),(lim_(x -> 0) (log(1 + x))/x = 1)]`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 2) [(logx - log2)/(x - 2)]`
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`