Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
उत्तर
`lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
= `lim_(x -> 0)(log[2(1 + x/2)] - log[2(1 - x/2)])/x`
= `lim_(x -> 0) (log2 + log(1 + x/2) - [log2 + log(1 - x/2)])/x`
= `lim_(x -> 0) (log(1 + x/2) - log(1 - x/2))/x`
= `lim_(x -> 0) [(log(1 + x/2))/x - (log(1 - x/2))/x]`
= `lim_(x -> 0) [(log(1 + x/2))/(2(x/2)) - (log(1 - x/2))/((-2)(-x/2))]`
= `1/2 lim_(x -> 0) (log(1 + x/2))/(x/2) + 1/2 lim_(x -> 0) (log(1 - x/2))/(-x/2)`
= `1/2(1) + 1/2(1) ....[(because x -> 0"," x/2 -> 0 and),(lim_(x -> 0) (log(1 + x))/x = 1)]`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`