हिंदी

Evaluate the following limit : limx→0[6x+5x+4x-3x+1sinx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`

योग

उत्तर

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`

= `lim_(x -> 0) [((6^x - 1) + (5^x - 1) + (4^x - 1) - 3^(x + 1) + 3)/sinx]`

= `lim_(x -> 0) ((6^x - 1) + (5^x - 1) + (4^x - 1) - 3(3^x - 1))/sinx`

= `lim_(x -> 0) (((6^x - 1)/x) + ((5^x - 1)/x) + ((4^x - 1)/x) - 3((3^x - 1)/x))/((sinx/x)`   ...[∵ x → 0 ∴ x ≠ 0]

= `(lim_(x -> 0) (6^x - 1)/x + lim_(x -> 0) (5^x - 1)/x + lim_(x -> 0) (4^x - 1)/x - 3 lim_(x -> 0)(3^x - 1)/x)/((lim_(x -> 0) sinx/x))`

= `(log 6 + log 5 + log 4 - 3 log 3)/1   ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= log(6 × 5 × 4) – log 33 

= `log((6 xx 5 xx 4)/27)`

= `log(40/9)`.

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.6 [पृष्ठ १५४]

APPEARS IN

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`


Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`


Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______ 


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


Evaluate the following  `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following :

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×