Advertisements
Advertisements
प्रश्न
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
उत्तर
`lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
= `lim_(x -> 0) ("e"^x + 1/"e"^x - 2)/x^2`
= `lim_(x -> 0) (("e"^x)^2 + 1 - 2"e"^x)/(x^2*"e"^x`
= `lim_(x -> 0) ((e^x - 1)^2)/(x^2*"e"^x)`
= `lim_(x -> 0) [(("e"^x - 1)/x)^2 xx 1/"e"^x]`
= `lim_(x -> 0) (("e"^x - 1)/x)^2 xx 1/(lim_(x -> 0) "e"^x`
= `(1)^2 xx 1/"e"^0 ...[lim_(x -> 0) ("e"^x - 1)/x = 1]`
= `1 xx 1/1`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
Evaluate the following limit :
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`