हिंदी

Evaluate the following Limits: limx→0ex+e-x-2x2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`

योग

उत्तर

`lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`

= `lim_(x -> 0) ("e"^x + 1/"e"^x - 2)/x^2`

= `lim_(x -> 0) (("e"^x)^2 + 1 - 2"e"^x)/(x^2*"e"^x`

= `lim_(x -> 0) ((e^x - 1)^2)/(x^2*"e"^x)`

= `lim_(x -> 0) [(("e"^x - 1)/x)^2 xx 1/"e"^x]`

= `lim_(x -> 0) (("e"^x - 1)/x)^2 xx 1/(lim_(x -> 0) "e"^x`

= `(1)^2 xx 1/"e"^0     ...[lim_(x -> 0) ("e"^x - 1)/x = 1]`

= `1 xx 1/1`

= 1

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - MISCELLANEOUS EXERCISE - 7 [पृष्ठ १०६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
MISCELLANEOUS EXERCISE - 7 | Q II. 12) | पृष्ठ १०६

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______ 


The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______ 


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following :

`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×