Advertisements
Advertisements
प्रश्न
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
उत्तर
`lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
= `lim_(x -> 0) ("e"^x + 1/"e"^x - 2)/x^2`
= `lim_(x -> 0) (("e"^x)^2 + 1 - 2"e"^x)/(x^2*"e"^x`
= `lim_(x -> 0) ((e^x - 1)^2)/(x^2*"e"^x)`
= `lim_(x -> 0) [(("e"^x - 1)/x)^2 xx 1/"e"^x]`
= `lim_(x -> 0) (("e"^x - 1)/x)^2 xx 1/(lim_(x -> 0) "e"^x`
= `(1)^2 xx 1/"e"^0 ...[lim_(x -> 0) ("e"^x - 1)/x = 1]`
= `1 xx 1/1`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`