Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
उत्तर
`lim_(x -> 0)(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))`
= `lim_(x -> 0)((2^x - 1)^3/x^3)/(((3^x - 1)*sinx*log(1 + x))/x^3) ...[("Divide numerator and"),("denominator by" x^3.),(because x -> 0"," x ≠ 0),(therefore x^3 ≠ 0)]`
= `(lim_(x -> 0) ((2^x - 1)/x)^3)/(lim_(x -> 0) ((3^x - 1)/x)* sinx/x* (log(1 + x))/x`
= `(lim_(x -> 0) (2^x - 1)/x)^3/((lim_(x -> 0) (3^x - 1)/x)*(lim_(x -> 0)sinx/x)(lim_(x -> 0) (log(1 + x))/x)`
= `(log2)^3/((log3)(1)(1)) ....[lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= `(log2)^3/log3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 2) [(logx - log2)/(x - 2)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`