English

Evaluate the following limit : limx→0[(2x-1)3(3x-1)⋅sinx⋅log(1+x)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`

Sum

Solution

`lim_(x -> 0)(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))`

= `lim_(x -> 0)((2^x - 1)^3/x^3)/(((3^x - 1)*sinx*log(1 + x))/x^3)   ...[("Divide numerator and"),("denominator by"  x^3.),(because x -> 0","  x ≠ 0),(therefore x^3 ≠ 0)]`

= `(lim_(x -> 0) ((2^x - 1)/x)^3)/(lim_(x -> 0) ((3^x - 1)/x)* sinx/x* (log(1 + x))/x`

= `(lim_(x -> 0) (2^x - 1)/x)^3/((lim_(x -> 0) (3^x - 1)/x)*(lim_(x -> 0)sinx/x)(lim_(x -> 0) (log(1 + x))/x)`

= `(log2)^3/((log3)(1)(1))  ....[lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= `(log2)^3/log3`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.6 [Page 154]

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`


Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`


Evaluate the following limit : 

`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Evaluate the following limit : 

`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`


Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______ 


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×