Advertisements
Advertisements
Question
Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`
Solution
`lim_(x -> 0)(5^x + 3^x - 2^x - 1)/x`
`lim_(x -> 0) ((5^x - 1) + (3^x - 2^x))/x`
= `lim_(x -> 0)((5^x - 1) + (3^x - 1) - (2^x - 1))/x`
= `lim_(x -> 0) ((5^x - 1)/x + (3^x - 1)/x - (2^x - 1)/x)`
= `lim_(x -> 0) ((5^x - 1)/x) + lim_(x -> 0) ((3^x - 1)/x) - lim_(x -> 0)((2^x - 1)/x)`
= `log 5 + log 3 - log 2 ...[lim_(x -> 0) ("a"^x - 1)/x - log "a"]`
= `log (5 xx 3)/2`
= `log 15/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`