Advertisements
Advertisements
Question
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Solution
`lim_(x -> 0)("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2`
= `lim_(x -> 0) ("a"^(2x)*"a"^x - "a"^(2x) - "a"^x + 1)/x^2`
= `lim_(x -> 0)("a"^(2x)("a"^x - 1) - 1("a"^x - 1))/x^2`
= `lim_(x -> 0) (("a"^x - 1)*("a"^(2x) - 1))/x^2`
= `lim_(x -> 0) (("a"^x - 1)/x xx("a"^(2x) - 1)/x)`
= `lim_(x -> 0)(("a"^x - 1)/x) xx lim_(x -> 0) (("a"^(2x) - 1)/(2x)) xx 2`
= `log"a"*(2log"a") ...[("As" x -> 0"," 2x -> 0 and),(lim_(x -> 0) ("a"^x - 1)/x = log "a")]`
= 2(log a)2
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following limit :
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`