Advertisements
Advertisements
प्रश्न
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
उत्तर
`lim_(x -> 0)("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2`
= `lim_(x -> 0) ("a"^(2x)*"a"^x - "a"^(2x) - "a"^x + 1)/x^2`
= `lim_(x -> 0)("a"^(2x)("a"^x - 1) - 1("a"^x - 1))/x^2`
= `lim_(x -> 0) (("a"^x - 1)*("a"^(2x) - 1))/x^2`
= `lim_(x -> 0) (("a"^x - 1)/x xx("a"^(2x) - 1)/x)`
= `lim_(x -> 0)(("a"^x - 1)/x) xx lim_(x -> 0) (("a"^(2x) - 1)/(2x)) xx 2`
= `log"a"*(2log"a") ...[("As" x -> 0"," 2x -> 0 and),(lim_(x -> 0) ("a"^x - 1)/x = log "a")]`
= 2(log a)2
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`