Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
उत्तर
`lim_(x -> 0)(log(3 - x) - log(3 + x))/x`
= `lim_(x -> 0) 1/x log ((3 - x)/(3 + x))`
= `lim_(x -> 0) log((3 - x)/(3 + x))^(1/x)`
= `lim_(x -> 0) log((1 - x/3)/(1 + x/3))^(1/x)`
= `log[lim_(x -> 0) ((1 - x/3)^(1/x))/(1 + x/3)^(1/x)]`
= `log[({lim_(x -> 0)(1 - x/3)^((-3)/x)}^((-1)/3))/({lim_(x -> 0)(1 + x/3)^(3/x)}^(1/3))]`
= `log(("e"^(-1/3))/("e"^(1/3))) ...[because x -> 0"," ± x/3 ->0 and lim_(x->0)(1 + x)^(1/x) ="e"]`
= `log "e"^((-2)/3)`
= `-2/3*log "e"`
= `-2/3(1)`
= `-2/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following limit :
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`