मराठी

Evaluate the following: limx→0[log(3-x)-log(3+x)x] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`

बेरीज

उत्तर

`lim_(x -> 0)(log(3 - x) - log(3 + x))/x`

= `lim_(x -> 0) 1/x log ((3 - x)/(3 + x))`

= `lim_(x -> 0) log((3 - x)/(3 + x))^(1/x)`

= `lim_(x -> 0) log((1 - x/3)/(1 + x/3))^(1/x)`

= `log[lim_(x -> 0) ((1 - x/3)^(1/x))/(1 + x/3)^(1/x)]`

= `log[({lim_(x -> 0)(1 - x/3)^((-3)/x)}^((-1)/3))/({lim_(x -> 0)(1 + x/3)^(3/x)}^(1/3))]`

= `log(("e"^(-1/3))/("e"^(1/3)))    ...[because x -> 0"," ± x/3 ->0 and lim_(x->0)(1 + x)^(1/x) ="e"]`

= `log "e"^((-2)/3)` 

= `-2/3*log "e"`

= `-2/3(1)`

= `-2/3`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - EXERCISE 7.4 [पृष्ठ १०५]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`


Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`


Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×