Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
उत्तर
`lim_(x -> 0)(log(3 - x) - log(3 + x))/x`
= `lim_(x -> 0) 1/x log ((3 - x)/(3 + x))`
= `lim_(x -> 0) log((3 - x)/(3 + x))^(1/x)`
= `lim_(x -> 0) log((1 - x/3)/(1 + x/3))^(1/x)`
= `log[lim_(x -> 0) ((1 - x/3)^(1/x))/(1 + x/3)^(1/x)]`
= `log[({lim_(x -> 0)(1 - x/3)^((-3)/x)}^((-1)/3))/({lim_(x -> 0)(1 + x/3)^(3/x)}^(1/3))]`
= `log(("e"^(-1/3))/("e"^(1/3))) ...[because x -> 0"," ± x/3 ->0 and lim_(x->0)(1 + x)^(1/x) ="e"]`
= `log "e"^((-2)/3)`
= `-2/3*log "e"`
= `-2/3(1)`
= `-2/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`