Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
उत्तर
`lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
= `lim_(x -> 0) ((2^x - 1)^2/x^2)/((3^x - 1*log 1 + x)/x^2) ...[("Divide Numerator and"),("Denominator by" x^2),("As" x -> 0"," x ≠ 0),(therefore x^2 ≠ 0)]`
= `(lim_(x -> 0) ((2^x - 1)/x)^2)/(lim_(x -> 0) [((3^x - 1)/x) xx (log 1 + x)/x]`
= `(lim_(x -> 0) ((2^x - 1)/x)^2)/(lim_(x -> 0) ((3^x - 1)/x) xx lim_(x -> 0) (log 1 + x)/x)`
= `(log 2)^2/(log 3 xx 1) ...[(lim_(x -> 0) ("a"^x - 1)/x = log"a"","),(lim_(x -> 0) (log(1 + x))/x = 1)]`
= `(log 2)^2/log3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
Evaluate the following limit :
`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`