Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
उत्तर
`lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
= `lim_(x -> 0) ((2^x - 1)^2/x^2)/((3^x - 1*log 1 + x)/x^2) ...[("Divide Numerator and"),("Denominator by" x^2),("As" x -> 0"," x ≠ 0),(therefore x^2 ≠ 0)]`
= `(lim_(x -> 0) ((2^x - 1)/x)^2)/(lim_(x -> 0) [((3^x - 1)/x) xx (log 1 + x)/x]`
= `(lim_(x -> 0) ((2^x - 1)/x)^2)/(lim_(x -> 0) ((3^x - 1)/x) xx lim_(x -> 0) (log 1 + x)/x)`
= `(log 2)^2/(log 3 xx 1) ...[(lim_(x -> 0) ("a"^x - 1)/x = log"a"","),(lim_(x -> 0) (log(1 + x))/x = 1)]`
= `(log 2)^2/log3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Evaluate the following :
`lim_(x -> 2) [(logx - log2)/(x - 2)]`
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.
Evaluate the following limit :
`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`