Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
उत्तर
`lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
= `lim_(x -> 0) ("a"^(3x) - 1 - "b"^(2x) - 1)/(log 1 + 4x)`
= `lim_(x -> 0) [("a"^(3x) - 1 - "b"^(2x) - 1)/x)/((log 1 + 4x)/x)`
= `(lim_(x -> 0) [("a"^(3x) - 1)/x - ("b"^(2x) - 1)/x])/(lim_(x -> 0) (log 1 + 4x)/(x)`
= `(lim_(x -> 0)[("a"^(3x) - 1)/(3x)] xx 3 - lim_(x -> 0)[("b"^(2x) - 1)/(2x)] xx 2)/(lim_(x -> 0) (log 1 + 4x)/(4x) xx 4)`
= `(3log "a" - 2 log"b")/(1 xx 4) ...[(because x -> 0"," 2x -> 0"," 3x -> 0),(4x -> 0 and lim_(x -> 0) ("a"^x - 1)/x = log "a"),(and lim_(x -> 0) (log (1 + x))/x = 1)]`
= `1/4(log"a"^3 - log"b"^2)`
= `1/4 log("a"^3/"b"^2)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Evaluate the following :
`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
Evaluate the following limit :
`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`