Advertisements
Advertisements
प्रश्न
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
उत्तर
`lim_(x -> 0)(log(4 - x) - log(4 + x))/x`
= `lim_(x -> 0) (log[4(1 - x/4)] - log[4(1 + x/4)])/x`
= `lim_(x -> 0)(log4 + log(1 - x/4) - [log4 log(1 + x/4)])/x`
= `lim_(x -> 0) (log(1 - x/4) - log(1 + x/4))/x`
= `lim_(x -> 0)[(log(1 - x/4))/x - (log(1 + x/4))/x]`
= `lim_(x -> 0) (log(1 - x/4))/((-4)(-x/4)) - lim_(x -> 0) (log(1 + x/4))/(4(x/4)`
= `-1/4 lim_(x -> 0) (log(1 - x/4))/(-x/4) - 1/4 lim_(x -> 0) (log(1 + x/4))/(x/4)`
= `-1/4(1) - 1/4(1) ...[("As" x -> 0"," x/4 -> 0"," (-x)/4 _> 0),(and lim_(x -> 0) (log(1 + x))/x = 1)]`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
Evaluate the following `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`