हिंदी

Evaluate the following limit : limx→0[8sinx-2tanxe2x-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`

मूल्यांकन

उत्तर

`lim_(x -> 0) (8^sinx - 2^tanx)/("e"^(2x) - 1)`

= `lim_(x -> 0) ((8^sinx - 1)(2^tanx - 1))/("e"^(2x) - 1)`

= `lim_(x -> 0) (((8^sinx - 1) - (2^tanx - 1))/x)/(("e"^(2x) - 1)/x)   ...[("Divide numerator and"),("Denominator by"  x.),(because x -> 0 therefore x ≠ 0)]`

= `(lim_(x -> 0) ((8^sinx - 1)/x - (2^tanx - 1)/x))/(lim_(x -> 0) ("e"^(2x) - 1)/x)`

= `(lim_(x -> 0) ((8^sinx - 1)/sinx* sinx/x - (2^tanx - 1)/tanx * tanx/x))/(lim_(x -> 0) (e^(2x) - 1)/x)`

= `((lim_(x -> 0) (8^sinx - 1)/sinx)(lim_(x -> 0) sinx/x) - (lim_(x -> 0) (2^tanx - 1)/tanx)(lim_(x -> 0) tanx/x))/((lim_(x -> 0) ("e"^(2x) - 1)/(2x)) xx 2)`

= `(log8(1) - (log2)(1))/((1) xx 2)  ...[(because x -> 0","  2x -> 0","),(sin x -> 0"," tanx -> 0),(lim_(x -> 0) ("a"^x - 1)/x = log"a")]`

= `(log  8/2)/2`

= `(log4)/2`

= `(log(2)^2)/2`

= `(2log2)/2`

= log 2

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.6 [पृष्ठ १५४]

APPEARS IN

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`


Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`


Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`


Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`


Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x  + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 2) [(logx - log2)/(x - 2)]`


Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×