हिंदी

Evaluate the following : limx→1[abx-axbx2-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`

योग

उत्तर

`lim_(x -> 1) ("ab"^x - "a"^x"b")/(x^2 - 1)`

= `lim_(x -> 1) ("ab"("b"^(x - 1) - "a"^(x - 1)))/(x^2 - 1^2)`

= `lim_(x -> 1) ("ab"("b"^(x - 1) - "a"^(x - 1)))/((x - 1)(x + 1))`

Put x = 1 + h, ∴ x – 1 = h

As x → 1, h → 0

∴ `lim_(x -> 1) ("ab"^x - "a"^x"b")/(x^2 - 1)`

= `lim_("h" -> 0) ("ab"("b"^"h" - "a"^"h"))/("h"(1 + "h" + 1))`

= `"ab" lim_("h" -> 0) ("b"^"h" - 1 + 1 - "a"^"h")/("h"(2 + "h"))`

= `"ab" lim_("h" -> 0) (("b"^"h" - 1) - ("a"^"h" - 1))/("h"(2 + "h"))`

= `"ab" lim_("h" -> 0) 1/(2 + "h") (("b"^"h" - 1)/"h" - ("a"^"h" - 1)/"h")`

= `"ab"* 1/(lim_("h" -> 0)(2 + "h")) (lim_("h" -> 0) ("b"^"h" - 1)/"h" - lim_("h" -> 0) ("a"^"h" - 1)/"h")`

= `"ab"* 1/(2 + 0) * (log"b" - log"a")  ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= `"ab"/2 log ("b"/"a")`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.2 | Q II. (13) | पृष्ठ १५९

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`


Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`


Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`


Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following :

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following :

`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×