Advertisements
Advertisements
प्रश्न
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
उत्तर
`lim_(x -> 0)[(log(1 + 9x))/x]`
= `lim_(x -> 0)[(log (1 + 9x))/(9x)] xx 9`
= 1 x 9 ...`[lim_(x -> 0) (log(1 + x))/x = 1]`
= 9
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`