हिंदी

Select the correct answer from the given alternatives. limx→3[5x-3-4x-3sin(x-3)] = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =

विकल्प

  • log 5 – 4

  • `log  5/4`

  • `log5/log4`

  • `log5/4`

MCQ

उत्तर

`log  5/4`

Explanation;

`lim_(x -> 3) (5^(x - 3) - 4^(x - 3))/(sin(x - 3))`

Put x – 3 = h

∴ x = 3 + h

As → 3, h → 0

∴ Required limit

= `lim_("h" -> 0) (5^"h" - 4^"h")/(sin "h")`

= `lim_("h" -> 0) ((5^"h" - 1) - (4^"h" - 1))/sin"h"`

= `lim_("h" -> 0) (((5^"h" - 1))/"h" - ((4^"h" - 1))/"h")/(lim_("h" -> 0) sin"h"/"h"`

= `(log5 - log4)/1  ...[lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= `log(5/4)`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.1 [पृष्ठ १५८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.1 | Q I. (14) | पृष्ठ १५८

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`


Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x  + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`


Evaluate the following limit : 

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following :

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following :

`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×