हिंदी

Evaluate the following limit : limx→0[(49)x-2(35)x+(25)xsinx⋅log(1+2x)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`

योग

उत्तर

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`

= `lim_(x -> 0) ((7^x)^2 - 2(7^x) (5^x) + (5^x)^2)/(sinx log (1 + 2x))  ...[(35^x = (5*7)^x = 5^x * 7^x),(49^x = (7^2)x = (7^x)^2)]`

= `lim_(x -> 0) [7^x - 5^x]^2/(sinx log (1 + 2x)`

= `lim_(x -> 0) [(7^x - 1) - (5^x- 1)]^2/(sin x log (1 + 2x))`

= `lim_(x -> 0) [(7^x - 1)/x - (5^x - 1)/x]^2/([sinx/x][(log(1 + 2x))/x])`   ...[∵ x → 0, ∴ x ≠ 0]

= `([lim_(x -> 0) ((7^x - 1)/x - (5^x - 1)/x)]^2)/([lim_(x -> 0) sinx/x] xx 2 [lim_(x -> 0)  (log(1 + 2x))/(2x)]`

= `[log 7  - log 5]^2/([1] xx 2[1])    ...[because x -> 0 ","  2x -> 0  "and" lim_(x -> 0) (log(1 + x))/x = 1  "and" lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= `1/2[log(7/5)]^2`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.6 [पृष्ठ १५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Exercise 7.6 | Q III. (5) | पृष्ठ १५४

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`


Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`


Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Evaluate the following limit : 

`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 2) [(logx - log2)/(x - 2)]`


Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


Evaluate the following  `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×