Advertisements
Advertisements
प्रश्न
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
उत्तर
`lim_(x -> 0) (3^x + 3^-x - 2)/x^2`
= `lim_(x -> 0) (3^x + 1/3^x - 2)/x^2`
= `lim_(x -> 0) ((3^x)^2 + 1 - 2(3^x))/(3^x*x^2)`
= `lim_(x -> 0) ((3^x - 1)^2)/(x^2*(3^x)` ...[∵ a2 – 2ab + b2 = (a – b)2]
= `lim_(x -> 0)((3^x - 1)/x)^2 xx 1/3^x`
= `lim_(x -> 0) ((3^x - 1)/x)^2 xx 1/(lim_(x -> 0) (3^x)`
= `(log3)^2 xx 1/3^0`
= `(log3)^2 xx 1/1 ....[lim_(x -> 0) ("a"^x - 1)/x = log "a"]`
= (log3)2
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`