हिंदी

Evaluate the following limit : limx→0[ax+bx+cx-3sinx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`

योग

उत्तर

`lim_(x -> 0)("a"^x + "b"^x + "c"^x - 3)/sinx`

= `lim_(x -> 0) (("a"^x - 1) + ("b"^x - 1) + ("c"^x - 1))/sinx`

= `lim_(x -> 0) (("a"^x - 1 + "b"^x - 1 + "c"^x - 1)/x)/(sinx/x)    ...[("Divide numerator and"),("denominator by"  x.),(because x -> 0 therefore x ≠ 0)]`

= `lim_(x -> 0) ((("a"^x - 1)/x) + (("b"^x - 1)/x) + (("c"^x - 1)/x))/(sinx/x)`

= `((lim_(x -> 0) ("a"^"x" - 1)/x) + (lim_(x -> 0) ("b"^x - 1)/x) + (lim_(x -> 0) ("c"^x - 1)/x))/((lim_(x -> 0) sinx/x))`

= `(log"a" + log"b" + log"c")/1   ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= log (abc)

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.6 [पृष्ठ १५४]

APPEARS IN

संबंधित प्रश्न

Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 2) [(logx - log2)/(x - 2)]`


Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______ 


`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.


Evaluate the following  `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following :

`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the limit: 

`lim_(z->2)[(z^2-5x+6)/(z^2-4)]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×