English

Evaluate the following limit : limx→0[ax+bx+cx-3sinx] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`

Sum

Solution

`lim_(x -> 0)("a"^x + "b"^x + "c"^x - 3)/sinx`

= `lim_(x -> 0) (("a"^x - 1) + ("b"^x - 1) + ("c"^x - 1))/sinx`

= `lim_(x -> 0) (("a"^x - 1 + "b"^x - 1 + "c"^x - 1)/x)/(sinx/x)    ...[("Divide numerator and"),("denominator by"  x.),(because x -> 0 therefore x ≠ 0)]`

= `lim_(x -> 0) ((("a"^x - 1)/x) + (("b"^x - 1)/x) + (("c"^x - 1)/x))/(sinx/x)`

= `((lim_(x -> 0) ("a"^"x" - 1)/x) + (lim_(x -> 0) ("b"^x - 1)/x) + (lim_(x -> 0) ("c"^x - 1)/x))/((lim_(x -> 0) sinx/x))`

= `(log"a" + log"b" + log"c")/1   ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= log (abc)

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.6 [Page 154]

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`


Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`


Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`


Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`


Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x  + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`


Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Evaluate the following limit : 

`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 2) [(logx - log2)/(x - 2)]`


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______ 


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


Evaluate the following  `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×