Advertisements
Advertisements
Question
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Solution
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
= `lim_(x -> 0) [((6^x - 1) + (5^x - 1) + (4^x - 1) - 3^(x + 1) + 3)/sinx]`
= `lim_(x -> 0) ((6^x - 1) + (5^x - 1) + (4^x - 1) - 3(3^x - 1))/sinx`
= `lim_(x -> 0) (((6^x - 1)/x) + ((5^x - 1)/x) + ((4^x - 1)/x) - 3((3^x - 1)/x))/((sinx/x)` ...[∵ x → 0 ∴ x ≠ 0]
= `(lim_(x -> 0) (6^x - 1)/x + lim_(x -> 0) (5^x - 1)/x + lim_(x -> 0) (4^x - 1)/x - 3 lim_(x -> 0)(3^x - 1)/x)/((lim_(x -> 0) sinx/x))`
= `(log 6 + log 5 + log 4 - 3 log 3)/1 ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= log(6 × 5 × 4) – log 33
= `log((6 xx 5 xx 4)/27)`
= `log(40/9)`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`