Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
उत्तर
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
= `lim_(x -> 0) [((6^x - 1) + (5^x - 1) + (4^x - 1) - 3^(x + 1) + 3)/sinx]`
= `lim_(x -> 0) ((6^x - 1) + (5^x - 1) + (4^x - 1) - 3(3^x - 1))/sinx`
= `lim_(x -> 0) (((6^x - 1)/x) + ((5^x - 1)/x) + ((4^x - 1)/x) - 3((3^x - 1)/x))/((sinx/x)` ...[∵ x → 0 ∴ x ≠ 0]
= `(lim_(x -> 0) (6^x - 1)/x + lim_(x -> 0) (5^x - 1)/x + lim_(x -> 0) (4^x - 1)/x - 3 lim_(x -> 0)(3^x - 1)/x)/((lim_(x -> 0) sinx/x))`
= `(log 6 + log 5 + log 4 - 3 log 3)/1 ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= log(6 × 5 × 4) – log 33
= `log((6 xx 5 xx 4)/27)`
= `log(40/9)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Select the correct answer from the given alternatives.
`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 2) [(logx - log2)/(x - 2)]`
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the limit:
`lim_(z->2)[(z^2-5x+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`